
4/29/07 1

8. Concurrency Control

for Transactions

Part Two

CSEP 545 Transaction Processing

Philip A. Bernstein

Copyright ©2007 Philip A. Bernstein



4/29/07 2

Outline
1. A Model for Concurrency Control

2. Serializability Theory

3. Synchronization Requirements for Recoverability

4. Two-Phase Locking

5. Implementing Two-Phase Locking

6. Locking Performance

7. Multigranularity Locking (revisited)

8. Hot Spot Techniques

9. Query-Update Techniques

10. Phantoms

11. Shared Disk Systems

12. B-Trees

13. Tree locking













4/29/07 3

8.6 Locking Performance

• Deadlocks are rare

– up to 1% - 2% of transactions deadlock

• The one exception to this is lock conversions

– r-lock a record and later upgrade to w-lock

– e.g., Ti = read(x) … write(x)

– if two txns do this concurrently, they’ll deadlock 

(both get an r-lock on x before either gets a w-lock)

– To avoid lock conversion deadlocks, get a w-lock first 

and down-grade to an r-lock if you don’t need to write.

– Use SQL Update statement or explicit program hints



4/29/07 4

Conversions in MS SQL Server

• Update-lock prevents lock conversion deadlock. 

– Conflicts with other update and write locks, but not 

with read locks. 

– Only on pages and rows (not tables)

• You get an update lock by using the UPDLOCK 

hint in the FROM clause

Select Foo.A

From Foo (UPDLOCK)

Where Foo.B = 7



4/29/07 5

Blocking and Lock Thrashing

Throughput

Low

High

# of Active Txns
Low High

• The locking performance problem is too much delay 

due to blocking

– little delay until locks are saturated

– then major delay, due to the locking bottleneck

– thrashing - the point where throughput decreases with 

increasing load

thrashing



4/29/07 6

More on Thrashing

• It’s purely a blocking problem

– It happens even when the abort rate is low

• As number of transactions increase

– each additional transaction is more likely to block

– but first, it gathers some locks, increasing the 

probability others will block (negative feedback)



4/29/07 7

Avoiding Thrashing

• If over 30% of active transactions are blocked, 

then the system is (nearly) thrashing

so reduce the number of active transactions

• Timeout-based deadlock detection mistakes

– They happen due to long lock delays

– So the system is probably close to thrashing

– So if deadlock detection rate is too high (over 2%) 

reduce the number of active transactions



4/29/07 8

Interesting Sidelights
• By getting all locks before transaction Start, you 

can increase throughput at the thrashing point 

because blocked transactions hold no locks

– But it assumes you get exactly the locks you need 

and retries of get-all-locks are cheap

• Pure restart policy - abort when there’s a conflict 

and restart when the conflict disappears

– If aborts are cheap and there’s low contention for 

other resources, then this policy produces higher 

throughput before thrashing than a blocking policy

– But response time is greater than a blocking policy



4/29/07 9

How to Reduce Lock Contention

• If each transaction holds a lock L for t seconds, 

then the maximum throughput is 1/t txns/second

Start CommitLock L

t

• To increase throughput, reduce t (lock holding time)

– Set the lock later in the transaction’s execution 

(e.g., defer updates till commit time)

– Reduce transaction execution time (reduce path length, 

read from disk before setting locks)

– Split a transaction into smaller transactions



4/29/07 10

Reducing Lock Contention (cont’d)

• Reduce number of conflicts

– Use finer grained locks, e.g., by partitioning tables 

vertically 

Part#   Price OnHand PartName CatalogPage

Part#   Price OnHand Part#   PartName CatalogPage

– Use record-level locking (i.e., select a database 

system that supports it)



4/29/07 11

Mathematical Model of Locking

• N transactions each own K/2 locks on average

– KN/2 in total

• Each lock request has probability KN/2D of 

conflicting with an existing lock.

• Each transaction requests K locks, so its probability 

of experiencing a conflict is K2N/2D.

• Probability of a deadlock is proportional to K4N/D2

– Prob(deadlock) / Prop(conflict) = K2/D

– if K=10 and D = 106, then K2/D = .0001

• K locks per transaction

• D lockable data items

• N transactions

• T time between lock requests



4/29/07 12

8.7 Multigranularity Locking (MGL)

• Allow different txns to lock at different granularity

– big queries should lock coarse-grained data (e.g. tables)

– short transactions lock fine-grained data (e.g. rows)

• Lock manager can’t detect these conflicts

– each data item (e.g., table or row) has a different id

• Multigranularity locking ―trick‖

– exploit the natural hierarchy of data containment

– before locking fine-grained data, set intention locks on 

coarse grained data that contains it

– e.g., before setting a read-lock on a row, get an 

intention-read-lock on the table that contains the row



4/29/07 13

MGL Type and Instance Graphs
Database

Area

File

Record

DB1

A1 A2

F1 F2 F3

R1.1 R1.2 R2.1 R2.2 R2.3 R2.1 R2.2

Lock Type

Graph
Lock Instance Graph

• Before setting a read lock on R2.3, first set an intention-read 

lock on DB1, then A2, and then F2.

• Set locks root-to-leaf.  Release locks leaf-to-root.



4/29/07 14

MGL Compatibility Matrix

r        w          ir        iw        riw

r      y        n          y         n          n

w      n        n          n         n          n

ir      y        n          y         y          y

iw      n       n          y         y          n

riw     n       n          y         n          n

riw = read with

intent to write,

for a scan that

updates some 

of the records it

reads

• E.g., ir conflicts with w because ir says there’s a fine-

grained r-lock that conflicts with a w-lock on the container

• To r-lock an item, need an r-, ir- or riw-lock on its parent

• To w-lock an item, need a w-, iw- or riw-lock on its parent



4/29/07 15

MGL Complexities

• Relational DBMSs use MGL to lock SQL queries, 

short updates, and scans with updates.

• Use lock escalation - start locking at fine-grain and 

escalate to coarse grain after nth lock is set.

Area

File

Record

Index

Index Entry

• The lock type graph is a 

directed acyclic graph, not 

a tree, to cope with indices

• R-lock one path to an item. 

W-lock all paths to it.



4/29/07 16

MS SQL Server

• MS SQL Server can lock at table, page, and row level.

• Uses intention read (―share‖) and intention write 
(―exclusive‖) locks at the table and page level.

• Tries to avoid escalation by choosing the ―appropriate‖ 
granularity when the scan is instantiated.

Table

Page

Index Range Extent



4/29/07 17

8.8 Hot Spot Techniques

• If each txn holds a lock for t seconds, then the 

max throughput is 1/t txns/second for that lock.

• Hot spot - A data item that’s more popular than 

others, so a large fraction of active txns need it

– Summary information (total inventory)

– End-of-file marker in data entry application

– Counter used for assigning serial numbers

• Hot spots often create a convoy of transactions. 

The hot spot lock serializes transactions.



4/29/07 18

Hot Spot Techniques (cont’d)

• Special techniques are needed to reduce t

– Keep the hot data in main memory

– Delay operations on hot data till commit time

– Use optimistic methods

– Batch up operations to hot spot data

– Partition hot spot data



4/29/07 19

Delaying Operations Until Commit

• Data manager logs each transaction’s updates

• Only applies the updates (and sets locks) after 

receiving Commit from the transaction

• IMS Fast Path uses this for

– Data Entry DB 

– Main Storage DB

• Works for write, insert, and delete, but not read



4/29/07 20

Locking Higher-Level Operations

• Read is often part of a read-write pair, such as 

Increment(x, n), which adds constant n to x, 

but doesn’t return a value.

• Increment (and Decrement) commute

• So, introduce Increment and Decrement locks

r     w     inc    dec

r    y      n       n       n

w   n      n       n       n
inc   n      n       y       y
dec   n      n       y       y

• But if Inc and Dec have a 

threshold (e.g. a quantity of 

zero), then they conflict 

(when the threshold is near)



4/29/07 21

Solving the Threshold Problem
Another IMS Fast Path Technique

• Use a blind Decrement (no threshold) and 

Verify(x, n), which returns true if x n

• Re-execute Verify at commit time

– If it returns a different value than it did during normal 

execution, then abort

– It’s like checking that the threshold lock you didn’t 

set during Decrement is still valid.

bEnough = Verify(iQuantity, n);

If (bEnough) Decrement(iQuantity, n)

else print (“not enough”);



4/29/07 22

Optimistic Concurrency Control

• The Verify trick is optimistic concurrency control

• Main idea - execute operations on shared data 

without setting locks. At commit time, test if there 

were conflicts on the locks (that you didn’t set).

• Often used in client/server systems

– Client does all updates in cache without shared locks

– At commit time, try to get locks and perform updates



4/29/07 23

Batching

• Transactions add updates to a mini-batch and only 

periodically apply the mini-batch to shared data.

– Each process has a private data entry file,

in addition to a global shared data entry file

– Each transaction appends to its process’ file

– Periodically append the process file to the shared file

• Tricky failure handling

– Gathering up private files

– Avoiding holes in serial number order



4/29/07 24

Partitioning

• Split up inventory into partitions

• Each transaction only accesses one partition

• Example

– Each ticket agency has a subset of the tickets

– If one agency sells out early, it needs a way to 

get more tickets from other agencies (partitions)



4/29/07 25

8.9 Query-Update Techniques

• Queries run for a long time and lock a lot of data —

a performance nightmare when trying also to run 

short update transactions

• There are several good solutions

– Use a data warehouse

– Accept weaker consistency guarantees

– Use multiversion data

• Solutions trade data quality or timeliness for 

performance



4/29/07 26

Data Warehouse
• A data warehouse contains a snapshot of the DB 

which is periodically refreshed from the TP DB

• All queries run on the data warehouse

• All update transactions run on the TP DB

• Queries don’t get absolutely up-to-date data

• How to refresh the data warehouse?

– Stop processing transactions and copy the TP DB to the 

data warehouse. Possibly run queries while refreshing

– Treat the warehouse as a DB replica and use a replication 

technique



4/29/07 27

Degrees of Isolation

• Serializability = Degree 3 Isolation

• Degree 2 Isolation (a.k.a. cursor stability)

– Data manager holds read-lock(x) only while reading x, 

but holds write locks till commit (as in 2PL)

– E.g. when scanning records in a file, each get-next-record 

releases lock on current record and gets lock on next one

– read(x) is not ―repeatable‖ within a transaction, e.g.,

rl1[x] r1[x] ru1[x] wl2[x] w2[x] wu2[x] rl1[x] r1[x] ru1[x]

– Degree 2 is commonly used by ISAM file systems

– Degree 2 is often a DB system’s default behavior!

And customers seem to accept it!!!



4/29/07 28

Degrees of Isolation (cont’d)

• Could run queries Degree 2 and updaters Degree 3

– Updaters are still serializable w.r.t. each other

• Degree 1 - no read locks; hold write locks to commit

• Unfortunately, SQL concurrency control standards 

have been stated in terms of ―repeatable reads‖ and 

―cursor stability‖ instead of serializability, leading 

to much confusion.



4/29/07 29

ANSI SQL Isolation Levels

• Uncommitted Read - Degree 1

• Committed Read - Degree 2

• Repeatable Read - Uses read locks and write locks, 

but allows ―phantoms‖

• Serializable - Degree 3



4/29/07 30

MS SQL Server 

• Lock hints in SQL FROM clause

– All the ANSI isolation levels, plus …

– UPDLOCK  - use update locks instead of read locks

– READPAST - ignore locked rows (if running read 

committed)

– PAGLOCK - use page lock when the system would 

otherwise use a table lock 

– TABLOCK - shared table lock till end of command or 

transaction 

– TABLOCKX - exclusive table lock till end of 

command or transaction 



4/29/07 31

Multiversion Data
• Assume record granularity locking

• Each write operation creates a new version instead 

of overwriting existing value. 

• So each logical record has a sequence of versions.

• Tag each record with transaction id of the 

transaction that wrote that version

Tid Previous E# Name     Other fields

123 null 1 Bill

175 123 1 Bill

134 null 2 Sue

199 134 2 Sue

227 null 27 Steve



4/29/07 32

Multiversion Data (cont’d)

• Execute update transactions using ordinary 2PL

• Execute queries in snapshot mode

– System keeps a commit list of tids of all committed txns

– When a query starts executing, it reads the commit list

– When a query reads x, it reads the latest version of x 

written by a transaction on its commit list

– Thus, it reads the database state that existed when it 

started running



4/29/07 33

Commit List Management

• Maintain and periodically recompute a tid T-
Oldest, such that

– Every active txn’s tid is greater than T-Oldest

– Every new tid is greater than T-Oldest

– For every committed transaction with tid T-Oldest, 
its versions are committed

– For every aborted transaction with tid T-Oldest, 
its versions are wiped out

• Queries don’t need to know tids T-Oldest

– So only maintain the commit list for tids > T-Oldest



4/29/07 34

Multiversion Garbage Collection

• Can delete an old version of x if no query will 

ever read it

– There’s a later version of x whose tid ≤ T-Oldest 

(or is on every active query’s commit list)

• Originally used in Prime Computer’s 

CODASYL DB system and Oracle’s Rdb/VMS



4/29/07 35

Oracle Multiversion 

Concurrency Control
• Data page contains latest version of each record, which 

points to older version in rollback segment.

• Read-committed query reads data as of its start time.

• Read-only isolation reads data as of transaction start time.

• ―Serializable‖ txn reads data as of the txn’s start time.

– An update checks that the updated record was not modified after 

txn start time.

– If that check fails, Oracle returns an error.

– If there isn’t enough history for Oracle to perform the check, 

Oracle returns an error. (You can control the history area’s size.)

– What if T1 and T2 modify each other’s readset concurrently?



4/29/07 36

Oracle Concurrency Control (cont’d)

• The result is not serializable!

• In any SR execution, one transaction would have 

read the other’s output

r1[x] r1[y] r2[x] r2[y] w1[x ] c1 w2[y ] c2



4/29/07 37

8.10 Phantoms
• Problems when using 2PL with inserts and deletes

T1: Read Accounts 1, 2, and 3

T2: Insert Accounts[4, Tacoma, 100]

T2: Read Assets(Tacoma), returns 500

T2: Write Assets(Tacoma, 600)

T1: Read Assets(Tacoma), returns 600

T1: Commit

Acct#    Location   Balance Location   Total

1          Seattle       400

2          Tacoma     200

3          Tacoma     300

Seattle      400

Tacoma    500

Accounts                                   Assets

The phantom record



4/29/07 38

The Phantom Phantom Problem
• It looks like T1 should lock record 4, which isn’t 

there!

• Which of T1’s operations determined that there 

were only 3 records?

– Read end-of-file?

– Read record counter?

– SQL Select operation?

• This operation conflicts with T2’s Insert 

Accounts[4,Tacoma,100]

• Therefore, Insert Accounts[4,Tacoma,100] 

shouldn’t run until after T1 commits



4/29/07 39

Avoiding Phantoms - Predicate Locks

• Suppose a query reads all records satisfying 
predicate P. For example,

– Select * From Accounts Where Location = ―Tacoma‖

– Normally would hash each record id to an integer lock id

– And lock control structures. Too coarse grained.

• Ideally, set a read lock on P

– which conflicts with a write lock Q if some record can 
satisfy (P and Q)

• For arbitrary predicates, this is too slow to check

– Not within a few hundred instructions, anyway



4/29/07 40

Precision Locks

• Suppose update operations are on single records

• Maintain a list of predicate Read-locks

• Insert, Delete, & Update write-lock the record and 

check for conflict with all predicate locks

• Query sets a read lock on the predicate and check 

for conflict with all record locks

• Cheaper than predicate satisfiability, but still too 

expensive for practical implementation.



4/29/07 41

8.12 B-Trees

• An index maps field values to record ids.

– Record id = [page-id, offset-within-page]

– Most common DB index structures: hashing and B-trees

– DB index structures are page-oriented

• Hashing uses a function H:V B, from field values 

to block numbers. 

– V = social security numbers. B = {1 .. 1000}

H(v) = v mod 1000

– If a page overflows, then use an extra overflow page

– At 90% load on pages, 1.2 block accesses per request!

– BUT, doesn’t help for key range access (10 < v < 75)



4/29/07 42

B-Tree Structure

Ki Pi Ki+1K1 P1 Kn-1 Pn. . . . . .

K´i P´i K´i+1K´1 P´1 K´n-1 P´n. . . . . .

• Index node is a sequence of [pointer, key] pairs

• K1 < K2 < … < Kn-2 < Kn-1

• P1 points to a node containing keys < K1

• Pi points to a node containing keys in range [Ki-1, Ki)

• Pn points to a node containing keys > Kn-1

• So, K ´1 < K ´2 < … < K ´n-2 < K ´n-1



4/29/07 43

Example  n=3
127 496

14        83 221      352

127   145    189 221    245   320

521     690

352    353    487

• Notice that leaves are sorted by key, left-to-right

• Search for value v by following path from the root

• If key = 8 bytes, ptr = 2 bytes, page = 4K, then n = 409

• So 3-level index has up to 68M leaves (4093)

• At 20 records per leaf, that’s 136M records



4/29/07 44

Insertion
• To insert key v, search for the leaf where v should appear

• If there’s space on the leave, insert the record

• If no, split the leaf in half, and split the key range in its 

parent to point to the two leaves

19           --

12    14   17

X

15         19

12   14  

X

15  17 

To insert key 15

• split the leaf

• split the parent’s range [0, 19)

to [0, 15) and [15, 19)

• if the parent was full, you’d

split that too (not shown here)

• this automatically keeps the

tree balanced



4/29/07 45

B-Tree Observations
• Delete algorithm merges adjacent nodes < 50% full, 

but rarely used in practice

• Root and most level-1 nodes are cached, to reduce 

disk accesses

• Secondary (non-clustered) index - Leaves contain 

[key, record id] pairs.

• Primary (clustered) index - Leaves contain records

• Use key prefix for long (string) key values

– drop prefix and add to suffix as you move down the tree



4/29/07 46

Key Range Locks

• Lock on B-tree key range is a cheap predicate lock

127     496

221     352

221    245   320

• Select Dept Where ((Budget > 250)

and  (Budget < 350))

• lock the key range [221, 352) record

• only useful when query is on an

indexed field

• Commonly used with multi-granularity locking

– Insert/delete locks record and intention-write locks range

– MGL tree defines a fixed set of predicates, and thereby 

avoids predicate satisfiability



4/29/07 47

8.13 Tree Locking

• Can beat 2PL by exploiting root-to-leaf access in a 

tree

• If searching for a leaf, after setting a lock on a node, 

release the lock on its parent

A

B C D

E F

wl(A) wl(B) wu(A) wl(E) wu(B)

• The lock order on the root serializes access 

to other nodes



4/29/07 48

B-tree Locking

• Root lock on a B-tree is a bottleneck

• Use tree locking to relieve it

• Problem: node splits

• So, don’t unlock a node till you’re sure its child won’t split 

(i.e. has space for an insert)

• Implies different locking rules for different ops

(search vs. insert/update)

19           --

12    14     17

X

P

C

If you unlock P before splitting C,

then you have to back up and lock

P again, which breaks the tree

locking protocol.



4/29/07 49

B-link Optimization

• B-link tree - Each node has a side pointer to the next

• After searching a node, you can release its lock before 

locking its child

– r1[P] r2[P] r2[C] w2[C] w2[C´] w2[P] r1[C] r1[C´]

19         --

12    14    17

P

CX

15        19

12   14   

X

15   17 

P

C´C

• Searching has the same behavior as if it locked the child 

before releasing the parent … and ran later (after the insert)


